快压

当前位置:首页 > 电脑技巧 > 正文

电脑3D图形加速卡术语

浏览次数:|更新日期:2015年04月02日

随着3D技术的发展,3D应用软件(尤其是3D游戏软件)大量涌现,使得3D图形加速卡成为大家谈论的一个热点,近年来,随着硬件技术的高速发展,以及微软Direct3D出台,更加快了3D图形加速卡大量面市的步伐。以往只能在高档图形工作站和专用电脑中见到这类图形卡,今天已逐渐走进我办公室和家庭。相信3D图形加速卡很快便会成为继声音卡和CDROM之后的多媒体电脑的又一标准配置。
  解3D加速卡及其相关技术时,往往会频繁遇到一些抽象的术语,本期特推出“3D图形加速卡术语大放送”一文,协助你快速跨入3D之门。
  3DAPI3D应用顺序接口)
  APIApplicatProgramInterfac缩写。API许多程序的集合,一个3DAPI能让编程人员所设计的3D软件只要调用API内的顺序,API就会自动和硬件的驱动顺序沟通,启动3D芯片内强大的3D图形处置功能。目前几种主流的3DAPI有DirectXOpenGL3DRRenserWarBRenderGlide/3Dfx及QuickDraw3DRave等。
  DirectX
  微软公司专为PC游戏开发的API特点是比较容易控制,可令显示卡发挥不同的功能,与Window95和WindowNT操作系统兼容性好,而且目前基本上是免费使用的以后就难说了DirectX5.0中共分六个部分:DirectDraw管理游戏的视频输出、Direct3D管理游戏的3D图形、DirectPlai管理游戏的网络通讯、DirectSound管理游戏的声音输出、DirectInput管理游戏的摇杆控制、DirectSetup管理游戏的装置。
  OpenGL开放式图形界面)
  由SiliconGraphic公司(即大名鼎鼎的SGI开发,能够在Window95WindowNTMacoBeoOS/2以及Unix上应用的API除了提供许多图形运算功能外,也提供了不少图形处理功能。由于OpenGL起步较早,一直用于高档图形工作站,其3D图形功能很强,超越DirectX许多,可最大限度地发挥WooDooPOWERVR等超级3D芯片的巨大潜力。因此许多游戏开发公司和图形软件开发公司强烈要求微软公司在Window下一个版本中加入对OpenGL支持。目前,这一合理要求已经被微软公司接受,将在Window98中同时支持DirectX和OpenGL
  ALPHA BIENDINGALPHA 值后处理)
  简单地说这是一种让3D物件发生透明感的技术。一个在屏幕上显示的3D物件,每个像素中通常附有红、绿、蓝(RGB三组数值。若3D环境中允许像素能拥有一组 Alpha值,就称它拥有一个AlphaChannelAlpha值记载像素的透明度。这样一来使得每一个物件都可以拥有不同的透明水平。Alphablend这个功能,就是处置两个物件在屏幕画面上叠加的时候,将Alpha值考虑在内,使其呈现接近真实世界的效果。
  Antialias抗锯齿处理)
  应用调色技术将图形边缘的锯齿”缓和,视觉上得到一种平滑边缘的效果。
  DEPTHCUEING景深效果处理)
  景深效果处理则是当物件远离观测者时,降低物件颜色与亮度的一项功能。例如,当一个物体离我视线越来越远时,看起来就会越来越模糊。
  FOGEFFECT雾化效果处理)
  顾名思义,功能就是制造一块指定的区域笼罩在一股烟雾弥漫之中的效果,顺序设计师可以自由调整雾的范围、水平、颜色等参数,再交由3D芯片负责将结果计算出来。
  DepthCue和FogEffect功能,对于决定“立体空间”外观显示有相当大的协助,让虚拟出来的世界更加接近真实的世界。
  HEIDI
  Heidi定位在开发3D图形应用的许多方面,扮演着协调动作的重要角色,由Autodesk公司提出来的规格。就图形处理工作的管理方面,如算图、着色、复制等作业,以及内部的信息传输,Heidi提供给应用软件一种动态化组织架构的管理方式。目前,采用 Heidi系统的应用顺序,有Kinetix3DStudioMA X动画制作顺序,和Autodesk为 AutoCA DR13开发的WHIP加速驱动顺序。
  MIPMA PPING贴图处理)
  显示3D图像时,MIP贴图处理非常重要。这项材质贴图的技术,依据不同精度的要求,而使用不同版本的材质图样进行贴图。当物件移近或远离观测者时,会在物体外表贴上相对应的材质图案,于是让物体呈现出更加真实的效果。例如:物件逐渐远离,依据这种处置方式,顺序就会贴上较单纯、细致度较低的材质图样,进而提高图形处置的整体效率。
  SHA DINGFLA TGOURA UDANDTEXTUREMA PPING着色处置:平面着色、高氏着色及材质贴图)
  绝大多数的3D物体是由多边形(polygon所构成的都必须经过某些着色处理,才不会以线结构(wireframe面目示人。Flatshade最简单,也是最快速的着色方法,每个多边形都会被指定一个单一且没有变化的颜色。这种方法虽然会产生出不真实的效果,但非常适用于快速成像作业(quickrender及其它要求速度重于细致度的场所。GouraudShade就稍为好一点。多边形上的每一点都会被指定一组色调(hue值,同时将多边形着上平顺的渐层色。
  TEXTUREMA PPING材质贴图)
  物体着色方面最引人注目,也是最拟真的方法,同时也多为目前的游戏软件所采用。一张平面图像(可以是数字化图像、小图标或点阵位图)会被贴到多边形上。
  VIDEOTEXTUREMA PPING动态材质贴图)
  目前最好的材质贴图效果,具有此种功能的图形图像加速卡,采用高速的图像处置方式,将一段连续的图像(可能是即时运算或来自一个AVI或MPEG档案)以材质的方法处置,然后贴到3D物件的外表上去。例如在赛车游戏中,挡风玻璃上贴一段连续的天空动画,就能做出类似即时反射环境贴图的效果(计算机基础)。
  PERSPECTIVECORRECTION透视角修正处理)
  要让一个经过材质贴图处理的3D物件具备相当真实的外貌,这项处置不可缺少。采用数学运算的方式,以确保贴在物件上的局部影像图会向透视的消失方向贴出正确的收敛。由于这项工作十分依赖处置器,所以对新一代的3D加速器而言,这个功能也是相当重要。有了3D加速器才干坚持图形的真实效果。以风靡世界的3D冒险游戏《古墓丽影2中的图形为例,图一中由于关闭了3D加速卡上“透视角修正”功能,人物所站的石板地面线条出现严重的弯曲变形;而图二中打开了3D加速卡上“透视角修正”功能,石板地面线条便保持了真实的效果。
  TEXTUREMA PINTERPOLA TION材质影像插补处理即滤化处理)
  当材质被贴到屏幕所显示的一个3D模型上时,材质处置器必需决定每个图素要贴到像素位置。由于材质是2D图片,而模型是3D物件,所以图素的范围与像素范围通常不能很好吻合。此时要解决这个像素的贴图问题,就得用插补处理的方式来解决。而这种处理的方式共分三种:NearestNeighborBilinear以及Trilinear
  NEA ESTNEIGHBOR近邻取样处置)
  一种较简单的材质影像插补的处置方式。使用包括像素最多部份的图素来贴图。这种处置方式速度比较快,常被用于3D游戏开发,不过图形的品质较差。
  BILINEA RLNTERPOLA TION双线性插补处理)
  一种较好的材质影像插补处理方式,能够先找出最近像素的四个图素,然后在之间作差补效果,最后发生的结果才会被贴到像素的位置上,这样,可以防止看到大块的像素呈现到萤幕上,就像在观察近距离图形时常常出现的马赛克”现象。这种处置方式适用于有一定景深的静态影像,不过无法提供影像的最佳品质,同时也不适用于移动中的物件。还是采用《古墓丽影2图像来说明:图三中,由于关闭了3D加速卡上的双线性插补”功能,人物身后左边的木桩上出现了明显的马赛克”现象。而在图四中,将3D加速卡上“双线性插补”功能打开,于是木桩上的马赛克”现象消失了
  PILNEA RLNTERPOLA TION三线性插补处理)
  一种更复杂的材质影像插补处理方式。会用到相当多的材质影像,而每张的大小恰好会是另一张的四分之一。例如:有一张材质影像是512512个图素,第二张就会是256256个图素,第三张便是128128个图素...等等,最小的一张是11使用这些多重解析度的材质影像,当遇到场景较深、较大时(如飞行模拟)就能提供高品质的贴图效果。三线性插补处置比双线性处理需要更大的计算量,而且需要更大的存储器时钟带宽。但是TrilinearInterpol可以提供最高的贴图品质。
  计算机基础知识教程
  FRA MERA TE画面更新率)
  荧光屏上画面更新的速度,其单位为FPS帧每秒)FPS越高画面越流畅。
  FRA MEBUFFER图形画面缓冲区)
  该区域主要用于存储可显示的图形信息,决定了可显示的最高分辨率与最大彩色数量。
  DOPTHBUFFERING双重缓冲区处置)
  绝大多数支持OpenGL3D加速卡都会提供两组图形画面信息,一组显示,另一组备用,这两组图形画面信息通常被看着frontbuffer和backbuffer这项功能让显示卡用frontbuffer存放正在显示的这格画面,而同时下一格画面已经在backbuffer待命。然后显示卡将两个buffer互换,backbuffer画面显示进去,且同时再在frontbuffer中画好下一格待命,如此形成一种互补的工作方式,迅速对画面的快速改变做出反应。
  RA MDA C存储器数模转换速度)
  计算机基础知识试题和答案
  表示将存储器图形数据转换成显示器上可见的像素光点的转换速度,单位为MHz其工作速度越高,频带越宽,高分辨率时的画面质量越好。
  ZBUFFERZ缓存)
  计算机
  3D环境中,每个像素会利用一组数据资料用来定义像素在显示时的纵深度(即Z轴座标值)ZBuffer所用的位数越高,则代表该显示卡所提供的物件纵深感也越精确。一般的3D加速卡仅能支持到16位或24位的ZBuffer对于普通的3D模型而言这也算足够了不过高级的3D卡更可支持到32位的ZBuffer对一个含有很多物体连接的较复杂的3D模型,能拥有较多的位数来表现深度感是相当重要的能避免闪烁现象发生。
  ZBUFFERINGZ缓存处理)
  ZBuffer为物件进行着色时,执行“隐藏面消除”工作的一项技术,使隐藏物件背后的部份不会被显示出来。